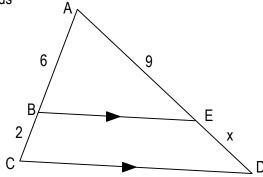
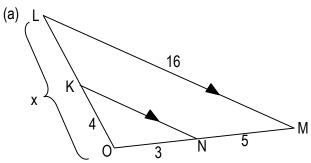
Geome	try Local Lomac 2015-2016	Date <u>3/18</u>	due <u>3/21</u>	Similarity: Comparing Ratio and Parallel 11.3I Methods				
Name LO:	I can show how the ratio metho and explain the side splitter the		Per lines lead to th	e side splitter theorem. I can use				
□ DO N	NOW On the back of this pac	ket						
(1) ruler and setsquare	Side Splitter Theorem (a) Read the statement of the side splitter and use the diagram to make sense of it. Complete the steps below to help you.							
	Restatement of the triangle side In \triangle $OA'B'$, \overline{AB} splits the sides μ if and only if $\overline{A'B'} \mid\mid \overline{AB}$.			B B' A'				
	(b) Trace the "side splitter" in the diagram above with a highlighter. (Hint, which segment "splits" or divides sides of a triangle into smaller segments?)							
	(c) The side splitter (segment) is parallel to segment							
	(d) Because a side splitter results in a scale drawing:							
	$\frac{OA'}{OA} = -$	=						
	(e) We can also write the pro	oportions belov	V:					

(2) Side Splitter Theorem

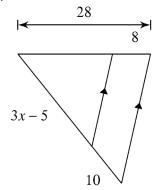

highlighter

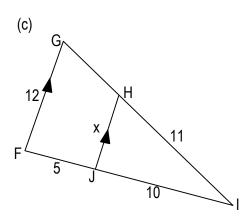
Lesson Summary

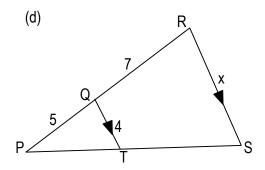
THE TRIANGLE SIDE SPLITTER THEOREM: A line segment splits two sides of a triangle proportionally if and only if it is parallel to the third side.


(3) Side Splitter Theorem: Find the measure of x by 2 different methods

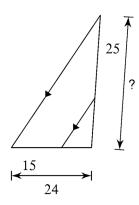
Method 1


Method 2

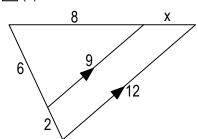

 \square (4) Side Splitter Theorem: Find the measure of x for each diagram



<u>(4)</u> **Side Splitter Theorem:** Find the measure of *x* for each diagram

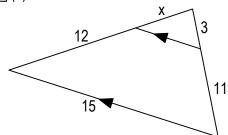


(7) Exit Ticket


ON THE LAST PAGE

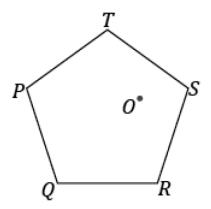
(8) Homework:

(8) compass, straightedg e


 \square (2) Find the value of x.

(8) compass, straightedg

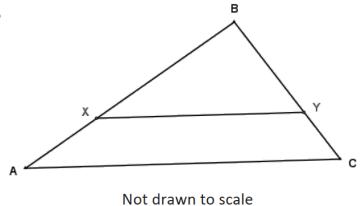
Homework:


 \square (3) Find the value of x.

- (4) (a) Construct equilateral triangle HOP. (b) Bisect angle O

(8) compass, straightedg Homework:

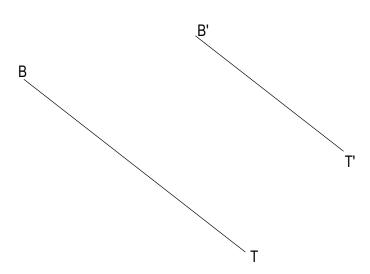
 \Box (5) Use the ratio method to construct a scale drawing of PQRST from center O with scale factor $r = \frac{5}{2}$



Exit Ticket	Name	Date	Per	11.3L
-AIL HONOL	1141110	Date	1 01	1110

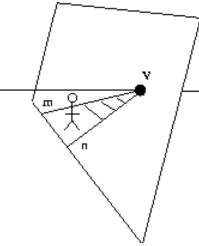
(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following: READ AND LABEL CAREFULLY!

In the diagram, $\overline{XY} \parallel \overline{AC}$. Use the diagram to answer the following:


1. If BX = 4, BA = 5, and BY = 6, what is BC?

Bonus point: If BX = 9, BA = 15, and BY = 15, what is YC?

(1) Autumn thinks she has made a scale drawing of triangle BT from center P with scale factor $r = \frac{3}{2}$. Explain what she did correctly and incorrectly by comparing ratios of corresponding sides and showing that P is or is not the center.


P

(2) When things are **proportional** they have equal ratios. Use a calculator (or simplify) to verify that the values are proportional as the equation suggests.

$$\frac{10}{15} = \frac{2}{3} = \frac{18}{27}$$

(3) In the 3D sketch of a person standing on train tracks at right, what 2 things do_ you notice about the railroad ties (the pieces connecting the rails)?

