| Name (print first and last) | Un | it 2 Geometry Re | 9/17 due 9/18
gents 2013-2014 Ms. Lomad | |---|--|---|--| | (1) Follow the directions of another student's exit ticket we what kinds of problems did you have as you followed your cla | • | an equilateral triar | ngle. | | Think about ways to avoid these problems. What criteria, or should be included in a rubric for evaluating your writing? Lis | | | ions
CONSTRUCTION → | | | | | | | ί ο , | everal Geometry glo
tation, and draw non- | ssary links are on | • | | (3) Use the segments below to construct triangle ABC s A C C | so that point C is abo | ve \overline{AB} . \overline{AB} is dra | awn for you. | | | •
A | | B [●] | | Now use the same segments to construct triang (4) Are the two triangles you constructed in #3 the same | | | t? | | | | | | | Name (print first and last) | Per Date: <u>9/17 due 9/18</u>
Unit 2 Geometry Regents 2013-2014 Ms. Loma | |---|--| | (1) At right, pairs of circles are drawn. (#8 from classwork will help
(a) Label the circles on the left with center A and radius AB an
A,B,C, and D should be collinear | | | (b) Under what conditions (in terms of distances AB, CD and Ai) One point in common?ii) No points in common?iii) Two points in common?iv) More than 2 points in common? Why? | AC) do the circles have | | | | | | | Use the skills you have learned in making equilateral triangles from Unit 2 Activity #1 to complete the construction below of a **regular hexagon**. A regular hexagon has all sides and angles congruent and has 6 sides.