Name (print first and last)				
				Geometry Regents 2013-2014 Ms. Lomac
SLO: I can use a pa	per compass to copy poi	nts and segments to mai	ntain distance and construc	ct triangles.
(1) Draw:	a) \overrightarrow{QM} on \overrightarrow{NM}	b) -	\overrightarrow{AB} intersecting \overrightarrow{CD} at E	
added to your notes	today. If you are absent	for notes, several Geome & write notation, and dra position ray construction	distance (length)	ls. Lomac's website that
a) The 5 ma	,	are (hint: see notes on 0		,
b) Points are	e	represented in dra	wings by	-
		se a f the segment that conne	to measure the cts the points)	between
d) When we	make a congruent copy	of a point or segment, w	e are performing a	
points that are the s	ame distance from C as		AB. Use your paper compoer compoer compass to show ALL of s!)	
	C •	D	•	

5) Use distance to construct isosceles triangles. \overline{ON} will be the bottom of every triangle (the triangles will overlap) and it vill be side that differs in length for every triangle you make. (LEAVE YOUR ARCS SO I CAN SEE WHAT YOU DID) Mark ne congruent sides in your diagram with congruence marks.
n △RON, RO and RN are this long: n △EON, EO and EN are this long: n △FON, FO and FN are this long: n △LON, LO and LN are this long: n △CON, CO and CN are this long:
O*************************************
6) What do you notice about R, E, F, L, and C?
7) What do you think will happen if we continue to make lengths of the two congruent sides shorter?
8) Connect the 5 points (REFLC) with a line segment long enough to intersect with $\overline{\text{ON}}$ and label that intersection point T.
9) How do you think the length of $\overline{\text{OT}}$ compares with the length of $\overline{\text{NT}}$?
Why do you think that and how could you convince me you are correct?
10) Use your notes to complete this section: \overline{RT} \overline{ON} cutting it in half which means that \overline{OT} is
to \overline{TN} and T is the \overline{ON}

(11) Pat yourself on the back,	high five your neighbor.	, and remind yourse	elf that you are a mat	h genius. Here is a	list of the
things you just did:					

- 1. Improved your use of the compass #5
- 2. Constructed 5 isosceles triangles #5
- 3. Constructed a perpendicular bisector #8
- 4. Constructed a right angle #8
- 5. Illustrated reflection symmetry #9
- 6. Justified your relationship between OT and NT (wow, that's the start of a proof!) #9
- 7. Anticipated the triangle inequality theorem #7

You probably don't even know what some of those things are yet!

(12) construct a triangle from the segment lengths below

- (13) Since you can't leave now anyway because your head is so big with your crazy Geometry skills, here are 3 more triangle construction problems for you. BE SURE TO label each **vertex** (corner) with a letter
 - a) Construct triangle BIG so that the 3 sides have these lengths:

b) Excellent! Now construct triangle DEL so that the 3 sides have these lengths:

c) Construct triangle YUP so that the 3 sides have these lengths: d) Construct triangle MEH so that the 3 sides have these lengths:
(14) What type of triangle are the triangles in #13? (equilateral, isosceles, scalene) Write the type of triangle next to each triangle.
(15) Are any of the triangles you constructed in problem 13 congruent (same size and shape)? How do you know?
(16) Draw a long line below with a straightedge. Use the lengths below to construct a segment whose length is equal to the sum of the lengths of the segments.
(17) Use the length below to draw \overline{ND} such that \overline{ND} is 4 times the length of the segment below. Label the midpoint of \overline{ND} point M.How do you know it is the midpoint?
(18) Almost done. Look at the picture at right and circle the statement that most accurately answers the question, "Which step have you reached today?"

WHICH STEP HAVE YOU REACHED TODAY?